
The University of Chicago Press Astronomical Society of the Pacific
http://www.jstor.org/stable/10.1086/658673 .

Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at .
http://www.jstor.org/page/info/about/policies/terms.jsp. JSTOR's Terms and Conditions of Use provides, in part, that unless
you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you
may use content in the JSTOR archive only for your personal, non-commercial use.

Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at .
http://www.jstor.org/action/showPublisher?publisherCode=ucpress. .

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed
page of such transmission.

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of
content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms
of scholarship. For more information about JSTOR, please contact support@jstor.org.

The University of Chicago Press and Astronomical Society of the Pacific are collaborating with JSTOR to
digitize, preserve and extend access to Publications of the Astronomical Society of the Pacific.

http://www.jstor.org

http://www.jstor.org/action/showPublisher?publisherCode=ucpress
http://www.jstor.org/action/showPublisher?publisherCode=astrosocpac
http://www.jstor.org/stable/10.1086/658673?origin=JSTOR-pdf
http://www.jstor.org/page/info/about/policies/terms.jsp
http://www.jstor.org/action/showPublisher?publisherCode=ucpress

SYNAPPS: Data-Driven Analysis for Supernova Spectroscopy

R. C. THOMAS,1 P. E. NUGENT,1 AND J. C. MEZA2

Received 2010 October 29; accepted 2010 December 14; published 2011 February 10

ABSTRACT. We introduce a new computer program, SYNAPPS, for forward-modeling of supernova (SN) spec-
troscopy data sets. SYNAPPS is a spectrum fitter embedding a highly parameterized synthetic SN spectrum cal-
culation within a parallel asynchronous optimizer. This open-source code is primarily aimed at the problem of
systematically interpreting large sets of SN spectroscopy data. While SYNAPPS should be useful to current
SN spectroscopy efforts like the Nearby Supernova Factory, Lick Observatory Supernova Search, Palomar Transient
Factory, Harvard Center for Astrophysics SN program, and so on, it could also benefit future similar efforts con-
nected to the Dark Energy Survey, Panoramic Survey Telescope and Rapid Response System, or the Large Synoptic
Survey Telescope. Smaller programs are also potential users. SYNAPPS illustrates the potential for data-driven
discovery enabled by high-performance computing, where complex physical systems are directly constrained
by large information-rich sets of scientific observations. Here, we discuss the motivation of our approach, outline
the structure of the code, present some example calculations, and describe a few enhancements in terms of physics
modeling, optimization, and computing that we will be pursuing for the future.

Online material: color figures

1. INTRODUCTION

A rough physical description of a supernova (SN) applicable
from a few days to months after explosion (phases easily acces-
sible to observation) is an optically thick, continuum-emitting
pseudophotosphere surrounded by an extended line-forming re-
gion (see, e.g., Branch et al. 2003 for a detailed review). Hydro-
dynamical forces are important in the first moments after
ignition, but the rapid unbinding of the progenitor puts the stel-
lar ejecta into homologous free expansion. As the SN expands,
the density of the gas drops as t!3 and the optically thick region
shrinks. Photons originating in the decay of freshly synthesized
radioactive nuclei and energy deposited by shocks are repro-
cessed by the SN atmosphere. The elemental abundances, den-
sities, and temperature structures in the ejecta influence the
emerging spectrum. As the SN evolves, its spectral energy dis-
tribution changes, reflecting the effect of newly exposed layers
of SN ejecta. The spectral features are line blends, broad over-
lapping absorption and emission features that form from com-
plex nonlinear radiative transfer processes. A set of SN spectral
time series encodes a picture like a computed tomography (CT)
scan (Fig. 1). With radiative transfer calculations to interpret
them, spectral time series reveal the structure of the ejecta, tell-

ing the story of the explosion and hinting at the history of the
pre-SN progenitor star.

In the SN field, radiative transfer calculations are the interface
through which observations confront theoretical predictions.
Computed photometry and spectra from detailed theoretical
high-performance computing (HPC) SN simulations are com-
pared with multiwavelength time-series observations to verify
or invalidate proposed explosion models. Many other astro-
physical problems are linked in one way or another to our
HPC-enabled understanding of SN explosions, such as the
life cycles of stars and the interstellar medium and the forma-
tion of compact objects. One notable example is SN cosmology.
Observations of Type Ia SNe (SNe Ia) led to the discovery that the
universe is not only expanding as Hubble (1929) found, but that
the rate of expansion itself is accelerating (Riess et al. 1998;
Perlmutter et al. 1999). The need to better understand SNe Ia
for future cosmology experiments is a key driver for the use
of HPC to construct ever-more-realistic numerical SN models
and test them against high-statistics, high-dimensionality
data sets.

Grids of model SN explosions sampling initial and attendant
conditions such as progenitor metallicity, distribution of ignition
points, envelope mass, and so on have been constructed in the
literature with varying levels of detail (e.g., 2D SN Ia explosion
model grids have just recently been calculated by Kasen et al.
2009). Often, models rely on simplified nucleosynthesis re-
action networks and do not always include detailed radia-
tion transfer postprocessing. Extreme-scale computing may
one day close this gap, enabling the construction of detailed

1 Computational Cosmology Center, Computational Research Division,
Lawrence Berkeley National Laboratory, 1 Cyclotron Road Mail Stop
50B4206, Berkeley, CA 94720-8151.

2Computational Research Division, Lawrence Berkeley National Laboratory,
1 Cyclotron Road Mail Stop 50B4230, Berkeley, CA 94720-8150.

237

PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF THE PACIFIC, 123:237–248, 2011 February
© 2011. The Astronomical Society of the Pacific. All rights reserved. Printed in U.S.A.

petabyte model data sets originating at first principles through
multidimensional time-dependent hydrodynamics and radiative
transfer simulations. The hope is that within these model data
sets is the right CT scan for every SN, or at least something very
close. Getting to that point has been, and will continue to be, a
slow process.

On the other hand, constraining explosion models from data-
driven SN analysis will narrow down the range of model grids
so that future HPC simulations can be effectively focused at the
right questions. For much of the history of the study of SN spec-
troscopy, fitting parameterized synthetic spectra to observations
has produced physics requirements for successful HPC explo-
sion simulations. This approach is the context of this article,
describing work that developed from the question of how to sys-
tematically interpret giant samples of SN Ia spectroscopy like
the forthcoming time-series spectrophotometry set from the
Nearby Supernova Factory (SNfactory; Aldering et al. 2002).
SNe Ia are the original problem domain, but our results are ap-
plicable to other types of SNe. Also, new wide-field surveys
such as the Palomar Transient Factory (Rau et al. 2009) are un-
covering exotic classes of explosive stellar transients for which

no established chain of modeling literature yet exists. The need
to physically account for these new objects is justification
enough for developing and using parameterized spectrum syn-
thesis codes instead of waiting for ab initio models to catch up.

A familiar example of such a code is SYNOW (Synthesis
Now; Fisher 2000; Branch et al. 2009). SYNOW treats line-
blending explicitly, enabling inferences about the presence or
absence of atomic species at various ejection velocity intervals
and their ionization states. These results play an important role
in constraining more detailed explosion models. Many of the
inferences are tentative until confirmed by more detailed codes,
but the idea is to point those efforts in the right direction—
guidance that is especially indispensable for understanding un-
usual new objects.

SYNOWand similar codes are interactive and run iteratively—
a reasonable design when the amount of data to examine is rela-
tively small. Users adjust approximately 50 input parameters and,
in about a minute on a desktop or laptop, can compare a synthe-
sized spectrumwith an observed one. Investigation proceeds in an
exploratorymanner as the usermakes adjustments needed to iden-
tify lines and obtain a good fit. The ability to explore is a strength

FIG. 1.—SN spectroscopy as a scan of a stellar explosion. The reprocessing of deposited energy by the ejecta imprints signatures that appear as spectroscopic features.
These features (strong absorptions, indicated by arrows, and separated by emission humps) encode atomic abundances, their distributions in velocity space, temperature
structure, and ejecta density. As the optically thick core region recedes deeper into the ejecta, inner layers are exposed and influence the appearance of the spectrum, as
depicted on the right. A week after explosion, the SN Ia is optically thick up to the outer layers, which are rich in silicon peak and unburned elements. Later, more
completely burned products (iron peak) are exposed and change the character of the spectrum markedly from blue to red. As the density drops, the outer layers also
become more optically thin, and the signatures previously apparent at early times weaken and the SN fades. See the electronic edition of the PASP for a color version of
this figure.

238 THOMAS, NUGENT, & MEZA

2011 PASP, 123:237–248

of the approach; as ions can be individually switched on or off, a
user can see how a spectrum is put together. Line identifications
are more confident when multiple ion signatures can be fit simul-
taneously, and fitting a feature at one wavelength results in pre-
dictions for lines from the same parent ion at others (fits in the
optical predict features in the ultraviolet or infrared). Users are
guided by experience and the accumulated wisdom of previous
generations of experts (e.g., Hatano et al. 1999). Experienced
users can make sense of a spectrum, through “chi-by-eye,” on
timescales of hours to days through iterative fitting.

In the face of newer, larger, and more accurate SN spectro-
scopic data sets, the prospect of performing hundreds of tedious
fits to thousands of spectra by human trial and error is more than
just daunting—it seems to be the wrong approach. Given the
volume of existing spectroscopic data sets, such as those accu-
mulated by the Harvard Center for Astrophysics (Matheson et al.
2008), the Lick Observatory Supernova Survey (Silverman et al.
2011, in preparation; Ganeshalingam et al. 2010), and, in par-
ticular, the SNfactory, we have undertaken the task of designing
and implementing an automated direct spectroscopic analy-
sis code.

This article describes a new code, SYNAPPS, for the auto-
mated analysis of SN spectra.3 SYNAPPS is an application
combining a highly parameterized model SN atmosphere calcu-
lation with a general parallel numerical optimization frame-
work, facilitating direct spectroscopic SN analysis. This
combination relieves the user from tedious iterative adjustment
of a large number of parameters to make gains in fit agreement
and ensures more exhaustive searching of the parameter space.
This article is organized into five sections. In § 2 we outline
our approach and describe the code. Section 3 includes sample
calculation results. Section 4 contains detailed instructions
on running SYNAPPS and its companion code SYN++. Sec-
tion 5 concludes this article, discussing directions for future
development.

2. TECHNIQUE

To solve the SYNOW automation problem, we cast the pro-
blem of fitting a SN spectrum as a constrained nonlinear
optimization problem. Bound constraints, linear inequality con-
straints, and linear equality constraints are all in play. The basic
optimization problem is of the standard form:

minimize fðxÞ
subject to cL ≤ AIx ≤ cU

AEx ¼ b

l ≤ x ≤ u: (1)

The function fðxÞ is a scalar objective function of the param-
eterization input vector x and measures the difference between
a synthetic spectrum and an observed one. Components of x
are the ingredients of a simplified model SN atmosphere:
velocities at the lower and upper boundaries of the line-forming
region, reference values and gradients for opacity profiles, ion
excitation temperatures, etc. Linear inequality constraints (the
matrix AI) may be used, for example, to confine iron opacity to
ejecta velocities below a floating cutoff that also serves as the
minimum velocity for some other species. Equality constraints
(matrix AE) are used to control what is called “detaching” ions
in SYNOW parlance: If the constraint is enforced, then the
minimum ejection velocity for an opacity profile is pegged
to the photospheric velocity, but if deactivated is allowed to
float (i.e., the opacity profile is “detached” from the photo-
sphere). Bound constraints (vectors l and u) provide a simple
means to restrict values to allowable ranges of interest. The
vectors cL, cu, and b define constraint surfaces in the parameter
space.

The approach seems straightforward, but in practice, there are
a number of design challenges. Analytical derivatives with re-
spect to the inputs of the objective function are not readily cal-
culable, and different numbers of parameters (entire ions) may
be used at different times. Though an L2-norm objective func-
tion is attractive from maximum-likelihood considerations, the
option of using an L1-norm instead to avoid overpenalizing bad
fits to spurious data or certain shortcomings of the parameteri-
zation may be desirable. This choice could even be user-defined
and quite general. Setup costs like atomic data management and
memory allocation should be amortized over large numbers of
objective function evaluations. We also recognized the utility of
focusing exploratory spectrum synthesis on individual ions, fea-
tures, or wavelength regions of interest, so we considered this
capability a design requirement.

We have reimplemented SYNOW as our fitting function in
modern C++ with some modifications and enhancements.
Our immediate aim is to keep the physics assumptions, basic
user interface, and workflow as familiar as possible for SYNOW
users—all of the usual SYNOWassumptions and caveats apply.
Line opacity is parameterized spatially (e.g., an exponential fall-
off with velocity) and as a function of wavelength with line
relative strengths set by Boltzmann excitation temperatures.
Line transfer is computed under the Sobolev approximation
(e.g., Rybicki & Hummer 1978; Jeffery & Branch 1990) and
assuming a pure resonance-scattering source function. The
photosphere is simulated as a sharply defined blackbody conti-
nuum-emitting surface. One difference from SYNOW is that
since there is no remote self-coupling for a given wavelength
bin in the computation of line source functions, they can be com-
puted using OpenMP loop-level parallelism over radius and an-
gle. This yields a small performance boost, limited by the barrier
at the end of each wavelength step: red line source functions
depend on bluer ones. An individual calculation takes less than

3SYNAPPS is available to anyone under the terms of the BSD license as a part
of the ES software package at http://c3.lbl.gov/es.

SYNAPPS FOR SUPERNOVA SPECTROSCOPY 239

2011 PASP, 123:237–248

a minute on a typical desktop or laptop computer, depending on
the number of atomic lines needed.

The spectrum synthesis calculation may be run as a single-
shot standalone executable (SYN++) or may be linked into
another application through a library interface. This library in-
terface is the means by which the calculation can be coupled to
an optimization framework and (using the notation of eq. [1]) is
designed to take a parameterization input vector x and return the
objective function value fðxÞ computed by comparing the
synthesized spectrum with an observed one.

The lack of analytic derivatives for the automation compo-
nent of our problem made something conceptually similar to the
derivative-free Nelder & Mead (1965) search attractive. Varia-
tions in the complexity of candidate evaluations could lead to
latency if they are launched in parallel, so we sought an asyn-
chronous search method. After some experimentation, the
APPSPACK (asynchronous parallel pattern search; Kolda
2005; Gray & Kolda 2005; Griffin & Kolda 2006) optimizer
package was selected. APPSPACK operates a parallel generat-
ing set search to help solve generic problems with upward of
100 variables on distributed architectures. It is a fault-tolerant
framework that is especially suitable to problems where analytic
derivatives are unavailable or the objective function is noisy.
Using APPSPACK, our new code, SYNAPPS, implements a
master-worker scheme—the master CPU generates trial points
x in the parameter space and communicates them to the worker
CPUs, which in turn synthesize the resulting spectra, compute
the objective function values fðxÞ, and report them back to the
master. Depending on criteria such as sufficient decrease in the
objective function, step size, contraction factor, etc., the master
CPU evaluates whether the trial point is an improved fit and
shifts, contracts, or otherwise adjusts the distribution of trial
points accordingly. The master CPU workload is light compared
with that of the workers, so no serial bottleneck through the
master CPU has been observed. APPSPACK manages the
trial-point list and communication between the master and
workers and keeps a cache of evaluated points for later refer-
ence, in lieu of recomputation. In practice, we observe that
about 10% of evaluations are recycled from the cache, and
the cache itself can be reused by subsequent runs in many cases.
Communication between APPSPACK-managed components
uses the Message-Passing Interface (MPI); so since individual
workers utilize OpenMP for the objective function, SYNAPPS
is a multilevel parallel code. The general architecture is depicted
in Figure 2.

The objective function is based on the Euclidean distance
between the synthesized spectrum and observed target spec-
trum, weighted by the flux uncertainties on the observed spec-
trum. To overcome some of the systematics introduced by the
approximate radiative transfer technique (for instance, due to
the treatment of the lower boundary as a sharp photosphere)
and also any low-frequency calibration artifacts in the data,
a low-order polynomial is multiplied against the synthesized

spectrum when it is compared with the observed spectrum.
Coefficients of the polynomial are themselves included as fit
parameters. There are goodness-of-fit measures engineered for
comparing SN spectra that could be used instead (DIFF1 and
DIFF2; Jeffery et al. 2007), but these do not readily incorporate
flux uncertainty information and, moreover, we prefer the well-
defined polynomial fit coefficients. In addition, telluric features
or parts of the spectrum to be ignored by the fit may be masked
out. Given the well-defined restricted goals (feature identifica-
tion and measuring ejecta velocity intervals for ions) and mod-
el systematics, this simple warping and masking are adequate
and are merely an attempt to robustly account for the filtering
that SYNOW users mentally apply when interactively fitting
spectra.

SYNAPPS has been tested and used on a number of archi-
tectures of different sizes. A typical SYNAPPS run to fit a
spectrum using a 16-core AMD Opteron Linux cluster without
OpenMP activated (each objective function evaluation takes
longer, but more are evaluated at once) takes about 12–18
wall-clock hours or less, depending on initial guess values.
This performance is probably attractive to researchers and lab-
oratories with access to such clusters and moderate amounts of
data. Larger systems, such as the Cray XT4 supercomputer
Franklin at the National Energy Research Scientific Computing
Center (NERSC) allow SYNAPPS to scale up to its full poten-
tial of a few hundred cores per spectrum and return results in a
half-hour or hour. Scaling (in terms of number of evaluations
per unit time) is linear up to a number of workers equal to
twice the problem dimensionality and then levels off—the

FIG. 2.—General architecture of the SYNAPPS program. The master node,
under APPSPACK control, maintains a queue of unevaluated trail points and
exchanges them with worker nodes for function values. This level of commu-
nication is asynchronous and managed through MPI. Each worker node runs a
synthetic spectrum calculation, using OpenMP loop-level parallelism to speed
up the calculation of line source functions. See the electronic edition of the PASP
for a color version of this figure.

240 THOMAS, NUGENT, & MEZA

2011 PASP, 123:237–248

APPSPACK generating set search cannot take advantage of
more workers (see § 5). Users other than the developer have
also used SYNAPPS on NERSC machines.

3. SAMPLE CALCULATIONS

Figure 3 contains an array of SYNAPPS fits to some pre-
liminary data from the SNfactory performed with the Franklin
supercomputer at NERSC. In fact, this figure may represent the
largest number of forward-modeling fits to individual SNe Ia
anywhere in the literature, and it includes only a fraction of
SNfactory SN Ia spectra obtained within 2.5 days of maximum
brightness. Most of the major ion features are faithfully repro-
duced. Spectra sampling a range of signal-to-noise ratios (S/N),
SN Ia luminosity class (less luminous than normal, to over-
luminous, and a possible super-Chandrasekhar-mass SN Ia),
and spectroscopic subtype are represented, all fit with relative
ease, but with different ions and ion strengths, as necessary.
When completed, SNfactory’s full analysis of its more than
2000 spectra will extend from the earliest available epochs
(1–2 weeks before maximum) to around 40 days past maxi-
mum; the radiative transfer technique is most reliable across this
window. The ability to scale to derive constraints on explosion
models from such large detailed data sets as from the SNfactory
means that we can finally conduct statistical, cross-sectional,
and longitudinal studies of the relationship of spectral-feature
evolution to other observables like color and luminosity and,
especially, that we can produce constraints for detailed explo-
sion models.

One capability we have carried forward from SYNOW is the
ability to “take apart” SN spectra with SYNAPPS, demonstrated
by the fits to the S II W blend in Figure 4. Faithfully fitting this
feature with SYNOW requires tedious iterative fine-tuning, but
SYNAPPS eliminates the need to do this manually. Here, we
have performed fits to a restricted portion of the spectra with
just one ion to see where it contributes to features at other
wavelengths. Such exploration allows us to identify which ions
influence the formation of the spectrum within blends, predict
features elsewhere to look for, and more confidently make line
identifications.

SYNAPPS has recently been used to interpret several un-
usual SNe and to place constraints on models of novel transient
phenomena. SYNAPPS has been used to study the spectrum of
SN 2007if at peak brightness—this peculiar SN Ia shows clear
spectroscopic signatures indicating a super-Chandrasekhar mass
progenitor, possibly from the coalescence of two white dwarfs
(Scalzo et al. 2010). SYNAPPS was instrumental in the identi-
fication of SN 2007bi as a pair-instability SN, the product of an
extremely massive (∼100 M⊙) progenitor star (Gal-Yam et al.
2009). Studies of other unusual stellar explosions discovered
by the Nearby Supernova Factory and Palomar Transient Factory
are underway.

4. USING THE PROGRAMS

We have released the SYNAPPS and SYN++ source code
together in a package called “ES: Elementary Supernova Spec-
trum Synthesis” under the BSD open-source license. In our de-
sign we have strived to ensure that both individual researchers

FIG. 3.—Result of automated analysis of several SN Ia spectra from the
SNfactory around maximum light with the SYNAPPS code. A range of S/N
and SN Ia luminosity and spectroscopic subclasses are represented. Parameter-
ized model SN Ia atmospheres are fit to the observed data (dark curve) by com-
paring them with synthetic spectra (light/red). These models can be compared
across the entire sample and across phase to trace out developmental similarities
and differences within the population. See the electronic edition of the PASP for
a color version of this figure.

SYNAPPS FOR SUPERNOVA SPECTROSCOPY 241

2011 PASP, 123:237–248

with small data sets and projects with larger ones find the codes
easy to work with. ES is equipped with a familiar GNU auto-
tools build system (configure, make) that has been tested on
a variety of Linux and Mac OS X systems of varying sizes and
types. Our intent is that SYNAPPS be useful not only for our
own research, but for that of others as well.

There is one minimum external software dependency that
must be satisfied to build both programs—atomic-line-list data
are stored in binary FITS files, so both programs must link
against the CFITSIO4 library. In addition, to build SYNAPPS,
BLAS,5 LAPACK,6 and APPSPACK7 software dependencies
must be satisfied. We strongly recommend installing the ver-
sion of APPSPACK designated specifically for linking with
SYNAPPS (version 5.0.1-C3), as it has a more robust build sys-
tem than the others. The dependencies may be detected automa-

tically by configure, but some or all may need to be
provided on the configure command line. If no dependency
other than CFITSIO is satisfied, then only SYN++ will be built.
Enabling OpenMP to accelerate line source-function calcula-
tions is optional for both codes, but building SYNAPPS requires
an MPI compiler (e.g., mpicxx).

A typical workflow with SYNAPPS and SYN++ can range
from highly exploratory to routine pipelined fittings. An explora-
tory fit begins with a few initial passes with one or a few ions
applied to a subset of wavelengths focused on any better-known
features. The results of these fits can be combined and more ions
and opacity components can be added until themajor features are
captured in the fit. The input files for both scripts are designed to
ease the activation/deactivation of ions and opacity components
for comparing fitswith orwithout them. If the target is of a known
type, fit results from similar objects at the same phase make for a
good starting point.

Both programs use a structured-input YAML8 control file;
examples are included with the source code. The example files
are organized into named blocks or sections, but in practice, any
valid YAML file containing all the required data is sufficient.
This makes creation and management of control files trivial
to script in Python, Perl, Ruby, or other languages supporting
YAML. There are sections common to the control files for
both programs—we discuss these common sections first and
then follow with program-specific settings for SYN++ and
SYNAPPS. The units conventions for all physical quantities ex-
pressed in the control files are as follows: angstrom for wave-
length quantities, 103 km s!1 for velocity quantities, and 103 K
for temperatures. Finally, all command examples use a $ sym-
bol to indicate a UNIX command-line prompt.

4.1. Common Control-File Components

Both SYN++ and SYNAPPS operate the same type of spec-
trum synthesis calculation, so the control files for both programs
have some parts in common. In principle, these settings require
only occasional adjustment—the variables most likely to require
adjustment specify the location of line-list files, line-forming-
region maximum-velocity limit, and whether or not output spec-
tra will be “flattened.” Some performance increase can be
achieved by making various grids smaller, but this may incur
an accuracy loss.

The grid control-file section governs radial velocity, line
opacity, and line source-function grids:

grid:
bin_width: 0.3
v_size: 100
v_outer_max: 30.0

FIG. 4.—Single-ion fits to SNfactory spectra with S II only. SYNAPPS can be
constrained to fit individual features or sections of spectra to allow prediction of
features at other wavelengths; SYNOW can accomplish the same task, but only
through lengthy manual iteration. Here, the S II “W” feature is fit (boxed region),
but the synthetic spectrum at other wavelengths predicts where other S II features
influence the formation of the spectrum. In the higher S/N spectra, small notches
predicted by SYNAPPS around 4600 Å due to S II are easily visible. See the
electronic edition of the PASP for a color version of this figure.

4 See http://heasarc.gsfc.nasa.gov/fitsio/.
5 See http://www.netlib.org/blas/.
6 See http://www.netlib.org/lapack/.
7 See https://software.sandia.gov/appspack/downloads/. 8 See http://www.yaml.org.

242 THOMAS, NUGENT, & MEZA

2011 PASP, 123:237–248

The parameters, in order, are the velocity width of the opacity
bins, the number of radial velocity grid points in the line-forming
region, and the maximum velocity allowed during the simulation
at the outer edge of the line-forming region. The last parameter
dictates the amount of wavelength overshoot on either end of the
synthetic spectrum wavelength grid to use when loading atomic
line data from disk.

The section opacity contains parameters for managing
atomic-line-list data and how Sobolev line opacity is distributed
spatially:

opacity:
line_dir: /usr/local/share/es/lines
ref_file: /usr/local/share/es/refs.dat
form: exp
v_ref: 10.0
log_tau_min: -2.0

For each ion, a relatively strong reference line has been selected
(in fact, these lines are the same as those used by SYNOW). The
opacity in this particular line is directly controlled by the user,
with radial parameterization dictated by some functional form.
Other lines from the same ion are scaled according to
Boltzmann level excitation. The line_dir and ref_file
variables in the preceding example point to a location on disk
where the atomic line data files are stored and the path to the
reference line-list file. The functional form of the Sobolev opac-
ity parameterization is specified by the form variable, with the
reference-line opacity normalized at v_ref. For the exponen-
tial functional form, the reference-line Sobolev opacity for a
given ion is given by

τ refðvÞ ¼ τ refðvrefÞ exp
!
vref ! v

ve

"
: (2)

In the initial release of ES, we have included only this radial
exponential functional form, but additional forms may be added
in the future. Parameter log_tau_min specifies an opacity
threshold (log10) below which total binned opacity at a given
grid point will be ignored.

The two short sections source and spectrum are mainly
concerned with resolution for integrating line source functions
and fluxes. The example values listed here are usually adequate:

source:
mu_size: 10

spectrum:
p_size: 60
flatten: No

At each radial grid point and for each wavelength, the mean
intensity integral includes 2×mu_size direction cosines, with
half subtending the photosphere and the other half subtending

the sky. At each wavelength of the synthesized spectrum,
p_size impact rays subtend the photosphere—additional rays
are added as needed to intersect the projected surface of the
emission lobe out to the edge of the line-forming region.
The flatten variable automatically removes the continuum
level from the output spectrum, which is mainly useful for
visualization.

4.2. Running SYN++

SYN++ is a standalone SN spectrum synthesis program. To
run it, one need only supply the path to a SYN++ YAML control
file. Assuming that the program has been installed into the
user’s UNIX executable path, an invocation could be:

$ syn++ syn++.yaml

where syn++.yaml is the name of the control file used. If
OpenMP was enabled at compile time, it may be activated at
runtime to parallelize line source-function calculations by set-
ting the OMP_NUM_THREADS environment variable to the
number of threads desired.

Synthesized output spectra are written to standard output in
multicolumn ASCII format. SYN++ is capable of synthesizing
multiple SN spectra in succession; the output spectra are sepa-
rated by a blank line. The output may be written to a file by shell
redirect:

$ syn++ syn++.yaml > output_spectrum.dat

or piped to another command such as XMGRACE:9

$ syn++ syn++.yaml | xmgrace obs_spectrum.dat -

In the preceding example, SYN++ is used to compute a spec-
trum or spectra, which are graphically overlaid on an observed
one. The program may easily be invoked by a system call from a
scripting language like Python, and the output may be captured
and postprocessed in some way. In the case that several spec-
trum calculations are to be performed by one SYN++ run, pro-
gress will be reported to standard error if the --verbose
command-line flag is specified.

The output section of the SYN++ control file governs the
wavelength grid of the synthetic spectrum:

output:
min_wl: 2500.0
max_wl: 10000.0
wl_step: 5.0

9 See http://plasma‑gate.weizmann.ac.il/Grace/.

SYNAPPS FOR SUPERNOVA SPECTROSCOPY 243

2011 PASP, 123:237–248

The output spectrum is computed on a regularly spaced grid
between the specified limits. Alternatively, the user may want
the output spectrum be computed on a wavelength grid taken
from another (possibly observed) spectrum. In that case, the
--wl-from option will override the control-file output
section:

$ syn++ --wl-from=obs_spectrum.dat syn++.yaml

The argument of the --wl-from option must be a multi-
column ASCII file, with the first column representing wave-
lengths in angstrom units. This option is useful for direct
wavelength-for-wavelength comparison without interpolation.

Each synthetic spectrum computation is controlled by a set-
up. One or more setups may be listed in a SYN++ control file.
Setups are expressed as a YAML list, with each entry preceded
on its first line by a dash character. Each setup is represented by
a dictionary of key-value pairs. Figure 5 illustrates an example
setup in a SYN++ control file.

The first three parameters listed in the example setup are the
warping function coefficients. The warping function applied to
the synthetic spectrum is

W ðλÞ ¼ a0 þ a1

!
λ! 6500

6500

"
þ a2

!
λ! 6500

6500

"
2

: (3)

Hence, setting both a1 and a2 to zero means that, effectively,
no warp is applied to the synthetic spectrum, and it will be out-
put as computed.

Parameters v_phot and v_outer are the inner and outer
bounds of the line-forming region, respectively. The value of
v_outer should never exceed the value of v_outer_max

defined in the grid section, to ensure that enough extra blue
and red wavelength coverage is included to build up the line
source functions and spectrum. A sharply defined Lambert
radiator surface is placed at v_phot with blackbody tempera-
ture t_phot.

Each opacity component includes an ion label and a Boolean
switch to activate or deactivate the component. In the preceding
setup listing, each opacity component corresponds to a column,
starting with an entry in the ions row at the top and ending
with the temp row at the bottom. Ion labels consist of two digits
for the atomic number and two digits for the ionization state
(neutral is 00, so H I is 100, Si II is 1401, and Fe III is
2602). The same ion may be used more than once to set up
an opacity component. The active switch conveniently tog-
gles an opacity component on or off, which can be helpful for
examining the overall effect that an ion has on a synthetic
spectrum.

In addition to the ion label and active switch, each opacity
component includes five parameters. The first is log_tau
(base 10), corresponding to the value of τ refðvrefÞ in equation 2,
the Sobolev opacity in the ion’s reference line at vref . The
v_min and v_max parameters are velocity bounds for the
opacity component. The aux parameter corresponds to an ad-
ditional parameter that needs to be specified for the spatial de-
pendence of the reference-line opacity—here, it corresponds to
ve in equation 2. Finally, the temp parameter is a Boltzmann
excitation temperature that sets the strengths of other lines from
the same ion relative to the ion reference line.

Opacity profiles for reference lines are computed in the order
they are specified in the setup. A consequence is that if two
opacity components specify reference-line optical depth for
the same ion, and they overlap in velocity space, the rightmost
component takes precedence between its v_min and v_max. If
there is no overlap in velocity space, then no such overwriting
occurs. Similarly, for a given ion, the rightmost excitation tem-
perature temp takes precedence.

Between execution of setups, the atomic line list may be re-
freshed. If the list of ions between two successive setups is dif-
ferent, then lines from ions used in the first but not in the second
are dropped, and lines from new ions used in the second but not
in the first are loaded. When two successive setups use the same
list of ions, no dropping or loading of lines is triggered. In a case
where all setups use the same list of ions, the line list is only
loaded once.

4.3. Running SYNAPPS

Assuming that SYNAPPS has been installed into the UNIX
executable path, the program may be run as follows:

$ mpirun -np 16 synapps synapps.yaml

This will start SYNAPPS up with one master and 15 worker
MPI processes. The exact command line may depend on the

FIG. 5.—Example SYN++ control-file setups section. A first full setup is
shown, followed by the start of a second.

244 THOMAS, NUGENT, & MEZA

2011 PASP, 123:237–248

version of MPI and the job-launcher (mpirun, aprun, etc.)
used. As with SYN++, if OpenMP was enabled at build time,
it may be activated at runtime by setting the OMP_NUM_
THREADS environment variable to the number of desired
threads, but per MPI process. In the preceding example, if
the number of OpenMP threads is set to four, a total of 64
OpenMP threads would be used, divided among MPI processes
into 16 teams of four. This would be an optimal allocation for a
16-node cluster with four shared-memory cores per node.

The SYNAPPS YAML control file is similar to the SYN++
control file, but instead of the output and setups section, it
includes an evaluator and config section. The config
section can be thought of as describing a parameter space from
which trial SYN++ setups will be generated. Such trial setups
correspond to trial x points indicated in equation (1).

Figure 6 shows an example evaluator section governing
how the objective function values are computed. The tar-
get_file setting is the path to the SN spectrum to be fit. This
file should be a three-column white-space-delimited ASCII file,
with columns wavelength (angstrom), flux (F λ units), and flux
error (also F λ units). The vector_norm parameter controls
the fit objective function:

fðxÞ ¼
!XN

n¼1

####
Sλðλn; xÞ ! F λðλnÞ

σn

####
L
"

1=L

: (4)

Here, Sλðλn; xÞ is the synthetic spectrum, F λðλnÞ is the target
spectrum, σn are the observed flux errors, and L is the value of
vector_norm. Symbols x and fðxÞ have the same meanings
as in equation (1).

The regions subsection of the evaluator block specifies
what parts of the target spectrum SYNAPPS will fit and which
parts it will ignore. Each wavelength in the target spectrum is
assigned an additional weight, with the value of this weight
determined by an “or” operation among the regions specified
columnwise. In the preceding listing, only the region between
5400 and 6400 Å will be fit—all other wavelengths below 1 μm
will be ignored, because they are assigned zero weight. The sec-
ond region specification is ignored altogether, since apply is
set to No.

Figure 7 represents the config section, which defines the
variables to be used in the fit, any imposed constraints, and
cache and output files. The fit_file and cache_file
variables specify where the final output fit spectrum will be
placed and the path to a cache file. If the cache file already ex-
ists, it will be ingested by the program at startup and added to as
the fit progresses. If the cache file listed in the config section
is not present, it will be created.

The parameters listed in the config section are the same as
in the setups section of the SYN++ control file. However,
each parameter gets five variables that control the parameter
constraints in the fit. A parameter may be held constant during

a fit if fixed is set to Yes. The initial parameter value is spec-
ified by the start variable. The lower and upper bounds for
the parameter are given by the correspondingly named vari-
ables. The start value should be within the lower and upper
bounds. Finally, the scale variable provides a normalization
value; in effect, this is akin to setting the initial step size for this
dimension. While SYNAPPS runs, it outputs a step size for
which all of these parameter normalizations have been applied.

Finally, the detach Boolean implements a linear equality
constraint if set to No. In this case, the value selected for v_min
for trial points will be exactly equal to v_phot. When not de-
tached, the starting value of v_min and v_phot should be set
equally. If an opacity component is detached, the values of
v_min and v_phot are allowed to differ.

4.4. Limitations and Strengths

It is important to bear in mind what SYNAPPS can and can-
not do when deciding on an analysis path for SN spectra. Ex-
tracting quantitative abundances from SN spectra requires a
more detailed treatment of the ejecta gas equation of state
and self-consistent radiation-field solution. However, even for
more sophisticated codes, it has been noted that such extraction
is ultimately still a very ill-posed inverse problem (e.g., Mazzali
et al. 2008). More generally, we emphasize that directly inter-
preting the objective function value as a χ2 fit measurement is
misleading, because the underlying model of this code includes
biases from parameterization and cannot account for all radia-
tive processes operating at all wavelengths in a real SN. Hence,
direct quantitative comparison of synthetic spectra with
observed ones should, in principle, be weighted somehow;
our masking and weighting approach works well in practice.
Most practitioners are aware of the tendency of some codes (like
ours) to overestimate flux at redder wavelengths in postmaxi-
mum SN Ia spectra, when a detailed fit to the blue can be made
otherwise. Our solution is to deweight, or mask, the red conti-
nuum portions—in hand-driven fits, this is simply ignored by
the user.

SYNAPPS is designed to provide the same kinds of results as
the older SYNOW code, but with more automation to make sys-
tematic analysis of larger data sets more practical and accessible

FIG. 6—Example SYNAPPS control-file evaluator section.

SYNAPPS FOR SUPERNOVA SPECTROSCOPY 245

2011 PASP, 123:237–248

to the SN community. Where SYNOW excels, SYNAPPS can
be expected to do likewise. The most reliable results from both
codes come in the form of information about what ion species
are present in the ejecta and what their distribution is in velocity

space. The parameterized model these codes use, and the
assumptions about radiative transfer made that trade in favor
of speed, make the use of the code most applicable during
the photospheric phase of SN evolution.

FIG. 7.—Example SYNAPPS control-file config section.

246 THOMAS, NUGENT, & MEZA

2011 PASP, 123:237–248

5. CONCLUSION AND FUTURE WORK

We have introduced a new code, SYNAPPS, which fuses a
valued tool for empirical analysis of SN spectra with a parallel
multidimensional optimization framework. The code is espe-
cially useful for systematic analysis of large data sets of SN
spectra, to place constraints on explosion models and to inform
more detailed HPC modeling codes. In the future, we anticipate
exploring three axes of SYNAPPS code development. One is to
investigate alternative parallel optimization frameworks: in par-
ticular, to possibly improve scaling and convergence. Another
goal is to improve performance of the objective function
through many-core computing. Finally, we are interested in im-
plementing a version of the code replacing the parameterized
spectrum synthesis calculation with a radiative equilibrium
model to improve constraints on explosion models. We briefly
outline these efforts here.

APPSPACK’s generating set search will not scale to an arbi-
trary number of MPI processes, and it is not guaranteed to return
a global minimum, but its recently released successor package
HOPSPACK (Griffin & Kolda 2008) addresses both of these
issues. It allows multiple optimization solvers of even multiple
types to run simultaneously, distributing function evaluations to
a pool of worker nodes. The optimizers can share information
about the objective function as the calculation progresses, en-
abling cooperation across algorithms with different strengths—
a generating set search may learn of a new minimum from a
global optimization search and then jump to it. This suggests
that better, but also more efficient, sampling of the parameter
space can be achieved than with APPSPACK. We have ensured
that the objective function that SYNAPPS uses is compatible
with the HOPSPACK framework interface, and we have run
some experiments with it. It is our intent to make APPSPACK
easily swapped out with HOPSPACK when the latter is mature
enough, with minimal impact to users. Part of the appeal of
APPSPACK is its lack of need for analytic derivatives of the
objective function. While these are not readily calculable,
numerical derivatives may be useful if the objective function
is not particularly noisy. There do exist frameworks of parallel
gradient-based optimizers that can incorporate numerical deri-
vatives (for example, OPT++; Meza et al. 2007). The main ex-
pectation from using gradient information is improved rates of
convergence.

The SYNAPPS objective function takes about a minute to
return a result—further parallelism through accelerator hard-
ware (such as graphics processor units [GPUs]) may promise
substantial performance improvements. Our first experiment
was to move the calculation of the main bottleneck code, the
line source function, to GPUs. A direct port in OpenCL (a pro-
posed standard for heterogeneous computing) results in a speed-
up of a factor of 10 on an NVIDIATesla C1060 card, including
the cost of transferring data to the GPU. With more effort to

capitalize on the GPUmemory hierarchy, a factor of 40 has been
achieved in the test code. We have begun development of an
experimental branch of SYNAPPS using GPUs.

Finally, it would be very interesting to replace the highly
parameterized SYNOW-style objective function in SYNAPPS
with a self-consistent radiative equilibrium model, such as that
employed in abundance tomography (e.g., Stehle et al. 2005).
This calculation is more complex, but could capitalize on find-
ings from the preceding studies. Monte Carlo methods can
ensure very fast convergence for SN problems (Lucy 1999;
Kasen et al. 2006), as they keep the radiation-field calculation
divergence-free throughout the atmosphere at each iteration, and
they parallelize trivially. This capability could allow the con-
struction of model SN ejecta profiles from a time-series set
of spectroscopic observations through a simultaneous fit. The
goal would be to maximize the potential of well-calibrated spec-
tral time series for rigorous constraints on explosion models
in the form of derived composition, density, and temperature
structures—the type of scan referred to earlier. This type of cal-
culation is more complex, and its implementation would likely
benefit from the application of results in the other future soft-
ware and GPU efforts.

We conclude by suggesting that SYNAPPS could provide
high-volume transient experiments with rapid turnaround ana-
lyses of a different sort from automated spectroscopic SN clas-
sifier codes (e.g., SNID; Blondin & Tonry 2007). These types of
analysis tools may prove increasingly important to organize
transient surveys in order to efficiently marshal more expensive
follow-up resources in real time.

The authors thank Tamara Kolda and Todd Plantenga of
Sandia National Laboratories for assistance with APPSPACK
and HOPSPACK, Ted Kisner at the Lawrence Berkeley Na-
tional Laboratory for GNU build tools support and graphics
processor unit experiments, the Nearby Supernova Factory
for permission to include plots incorporating some of their
data prior to publication, and the anonymous referee whose
comments greatly improved the paper. R. C. T. thanks fellow
participants of the Aspen Center for Physics Summer 2010
workshop, “Taking Supernova Cosmology into the Next Dec-
ade,” for their input. This work was supported by the Director,
Office of Science, Office of High Energy Physics, of the US
Department of Energy under contract no. DE-AC02-
05CH11231 and by a grant from the Gordon & Betty Moore
Foundation. This research used resources of the National En-
ergy Research Scientific Computing Center, which is supported
by the Director, Office of Science, Office of Advanced Scien-
tific Computing Research, of the US Department of Energy un-
der contract no. DE-AC02-05CH11231. This research was also
supported by the US Department of Energy Scientific Discovery
through Advanced Computing program under contract no. DE-
FG02-06ER06-04.

SYNAPPS FOR SUPERNOVA SPECTROSCOPY 247

2011 PASP, 123:237–248

REFERENCES

Aldering, G., et al. 2002, Proc. SPIE, 4836, 61
Blondin, S., & Tonry, J. L. 2007, ApJ, 666, 1024
Branch, D., Baron, E., & Jeffery, D. J. 2003, Lect. Notes Phys., 598, 47
Branch, D., Dang, L., & Baron, E. 2009, PASP, 121, 238
Fisher, A. 2000, Ph.D. thesis, Univ. Oklahoma
Gal-Yam, A. 2009, Nature, 462, 624
Ganeshalingam, M., et al. 2010, ApJS, 190, 418
Gray, G., & Kolda, T. 2005, ACM Trans. Math. Software, 32, 485
Griffin, J., & Kolda, T. 2006 (SAND2006-4621; Albuquerque: Sandia)
———. 2008 (SAND2008-6553; Albuquerque: Sandia)
Hatano, K., et al. 1999, ApJS, 121, 233
Hubble, E. 1929, PNAS, 15, 168
Jeffery, D. J., & Branch, D. 1990, in Winter School for Theoretical
Physics, Supernovae, (Jerusalem: IAS), 149

Jeffery, D. J., et al. 2007, ApJS, 171, 493

Kasen, D., Thomas, R. C., & Nugent, P. 2006, ApJ, 651, 366
Kasen, D., Röpke, F., & Woosley, S. 2009, Nature, 460, 869
Kolda, T. 2005, SIAM J. Optim., 16, 563
Lucy, L. B. 1999, A&A, 344, 282
Matheson, T., et al. 2008, AJ, 135, 1598
Mazzali, P. A., et al. 2008, MNRAS, 386, 1897
Meza, J. C., et al. 2007, ACM Trans. Math. Software, 33, 12
Nelder, J., & Mead, R. 1965, Comput. J., 7, 308
Perlmutter, S., et al. 1999, ApJ, 517, 565
Rau, A., et al. 2009, PASP, 121, 133
Riess, A., et al. 1998, AJ, 116, 1009
Rybicki, G. B., & Hummer, D. G. 1978, ApJ, 219, 654
Scalzo, R., et al. 2010, ApJ, 713, 1073
Stehle, M., et al. 2005, in ASP Conf. Ser. 343, 1604–2004: Supernovae

as Cosmological Lighthouses (San Francisco: ASP), 393

248 THOMAS, NUGENT, & MEZA

2011 PASP, 123:237–248

